Thứ Ba, 12 tháng 3, 2013

Bijection, injection, surjection

Các khái niệm toán học thường dùng trên tập hợp:
1. Bijection: song ánh.
2. Injection: đơn ánh.
3. Surjection: toàn ánh.


Bijection

Bijection
A transformation which is one-to-one and a surjection (i.e., "onto").




Injection

Injection
Let f be a function defined on a set A and taking values in a set B. Then f is said to be an injection (or injective map, or embedding) if, whenever f(x)=f(y), it must be the case that x=y. Equivalently, x!=y implies f(x)!=f(y). In other words, f is an injection if it maps distinct objects to distinct objects. An injection is sometimes also called one-to-one.
linear transformation is injective if the kernel of the function is zero, i.e., a function f(x) is injective iff Ker(f)=0.
Bijection
A function which is both an injection and a surjection is said to be a bijection.
In the categories of sets, groups, modules, etc., a monomorphism is the same as an injection, and is used synonymously with "injection" outside of category theory.


Surjection

Surjection
Let f be a function defined on a set A and taking values in a set B. Then f is said to be a surjection (or surjective map) if, for any b in B, there exists an a in A for which b=f(a). A surjection is sometimes referred to as being "onto."
Let the function be an operator which maps points in the domain to every point in the range and let V be a vector space with A,B in V. Then atransformation T defined on V is a surjection if there is an A in V such that T(A)=B for all B.
In the categories of sets, groups, modules, etc., an epimorphism is the same as a surjection, and is used synonymously with "surjection" outside ofcategory theory.

Không có nhận xét nào: